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Abstract

Goal of this bachelor thesis is to introduce multithreading support into the TakaTuka Java

virtual machine. The TakaTuka project is an effort to provide a Java environment and devel-

opment platform for sensor motes. As these motes offer only a limited amount of resources,

special care has to be taken in order to minimize the requirements of the virtual machine in

terms of memory and computation.

The work is focused on basic threads functionality instead of implementing novel algorithms

related to scheduling or locking. Subsequent projects will improve TakaTuka on the current

thread infrastructure developed in this work. Therefore, several aspects of the presented im-

plementation are evaluated and discussed, pointing out weaknesses and alternatives.

This thesis also takes a step forward to real application of the TakaTuka virtual machine

by an integration into TinyOS. First successful attempts are made to adapt Java level threads

to the underlying event-based driver architecture.

The most important demands to the implementation provided by this work are:

• Realization of Java compliant interfaces and semantics of the Thread class and Java’s

synchronization constructs.

• Low memory and computation overhead, as the target devices offer only restricted re-

sources.

• A stable base for improving the capabilities and design of the virtual machine with regard

to library and driver support.
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Zusammenfassung

Das Ziel dieser Bachelorarbeit besteht darin, Unterstützung für Multithreading für die TakaTuka

Java Virtual Machine bereitzustellen. Das TakaTuka-Projekt will die Programmiersprache Java

im Bereich der Sensornetzwerke etablieren. Die dort verwendeten Hardwarekomponenten, auch

"Motes" genannt, stellen nur begrenzte Speicher- und Rechenkapazitäten bereit. Deshalb liegt

ein besonderes Augenmerk darin, die Anforderungen der virtuellen Maschine möglichst gering

zu halten.

Diese Arbeit konzentriert sich auf die grundlegende Funktionalität von Threads, anstatt

neue Algorithmen für Zeitplanung und Sperrmechanismen zu entwickeln. Weiterführende Pro-

jekte werden TakaTuka auf Basis der hier vorgestellten Umsetzung verbessern. Zu deren Un-

terstützung wird die vorgestellte Umsetzung kritisch diskutiert und Schwachstellen sowie Al-

ternativen ausgezeichnet.

Außerdem zielt die Arbeit auf eine zukünftige reale Anwendung der TakaTuka-Platform ab,

indem die virtuelle Maschine in das Betriebssystem TinyOS integriert wird. Eine Schnittstelle

zwischen den Java-Threads und der zugrundeliegenden Treiberarchitektur wird erfolgreich umge-

setzt und soll als Anknüpfungspunkt für zukünftige Entwicklungen dienen.

Die wichtigsten Anforderungen an die vorgestellte Implementierung sind folgende:

• Unterstützung von Threads wie sie im Java Standard definiert sind, einschließlich der

Synchronisationsmechanismen.

• Der Resourcenverbrauch der Umsetzung sollte möglichst gering gehalten werden.

• Eine stabile Grundlage soll geschaffen werden, damit TakaTuka im Bezug auf Treiber-

und Bibliotheksunterstützung erweitert und verbessert werden kann.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

The field of wireless sensor networks is an active research area with increasing popularity. As

wireless sensor nodes, also called motes, are getting smaller and cheaper, the application of

such devices in real world settings becomes more and more convenient. A typical mote usually

has less than 10kB of RAM, a few hundreds of kB flash memory and an 8-bit microcontroller.

An example is Crossbow’s mica2 [9], which has 4kb RAM and 128kb Flash memory. This is

currently the primary test platform for the virtual machine, besides the PC.

Commonly, motes are programmed in low level languages, like C or nesC to encounter their

resource constraints and the requirements of wireless sensor networks. A variety of operating

systems have been developed, supporting different programming paradigms and environments.

A programmer must make himself familiar with their features and peculiarities before he is able

to use these systems efficiently. This may not only affect productivity, but also the quality of

the code.

A popular operating system for wireless sensor networks is TinyOS [17]. It supports many

hardware platforms and follows an event driven component based design approach. TinyOS

is programmed in nesC, a language specifically designed for the application in wireless sensor

networks. It provides clever abstraction and aims towards high reusability by enforcing the

specification of interfaces for every component. However, nesC lacks support for objects and

the use of dynamic memory allocation is discouraged. Also, the event-driven programming

style is different from the synchronous multiprocessing environments with blocking calls, which

many programmers know from desktop operating systems. Section 5.2 contains more details

about the TinyOS internals.

Java is a popular programming language, which supports object-oriented design with run-

time polymorphism, automatic garbage collection and well organized standard libraries. It

was created with platform independence in mind and relies on a virtual machine to execute

Java programs. The virtual machine can abstract over the different interfaces and glitches of

hardware platforms and operating systems. It always provides the same environment, viewed

from a Java program. These benefits ease the programming effort, whereas they also introduce

significant overhead in memory and computation [21].

The goal of the TakaTuka project is to provide an implementation of a machine and Java

environment, which is able to run on such constrained devices as sensor motes, by reducing the

resource requirements inherent to Java systems as much as possible.

Java has built-in support for sophisticated multithread programming. The Connected Lim-

ited Device Configuration (CLDC) [22] [2] is a standard declared by Sun Microsystems. It

defines a subset of the Java language and features, which a virtual machine has to provide

in order to be CLDC compliant. This standard mandates thread support, hence TakaTuka
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1 INTRODUCTION

must implement concurrency in order to fully support CLDC, which is our aim. Once imple-

mented, threads offers a flexible organization of concurrent tasks within the Java sensor mote

application.

1.2 Related Work

Currently, there are several efforts to introduce Java as a sensor networks programming lan-

guage. It can be taken as evidence of a growing market and future perspective of Java in this

field.

Sun Microsystems has introduced their Java virtual machine called Squawk [21] [23], which

currently runs on a mote named SunSPOT [5]. The source code of the Squawk system has

been put under the GPL in January 2008. Squawk is has an unusual design, as much of its core

functionality is actually implemented in Java itself. Some of this Java code is translated to C

and directly compiled into the virtual machine, however, most of it is interpreted at runtime.

The interpreter is written in C and provides the necessary hooks for the Java part to operate.

This approach allows the developers to test much of the virtual machine code as a Java progam,

supported by the existing toolset and the stricter typing rules of Java. Although Squawk aims

at resource-constrained devices, it needs around 14kB of RAM and around 500kB of Flash to

execute a "Hello World"-program [12]. The SunSPOT has a total 512kb RAM and 4mb Flash

memory. Typical motes do not offer this much resources, hence it is impossible to port Squawk

to such devices.

Sentilla Corp. sells their own custom Java virtual machine [13] which is limited to their

own motes. It uses less memory than Squawk and is CLDC compliant, but it is not openly

available.

Multithreading is an active research area in wireless sensor networks:

The MANTIS operating system [7] supports a subset of the posix threading interface, which

allows scheduling of stateful machine level threads.

The RETOS operating system [15] also offers posix threads with realtime capabilities. It

incorporates several optimizations to reduce the overhead of a thread implementation, like

stack size analysis [16].

The protothreads library [11] provides cooperative pseudothreads implemented by a few C

macros, requiring minimal additional memory for its operation. However, it does not support

real thread preemption.

Finally, the TinyOS scheduler has been extended to support preemption of tasks to meet timing

deadlines of high priority [8].
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1 INTRODUCTION

1.3 TakaTuka

The TakaTuka project aims to create a Java virtual machine for sensor applications. It should

be able to run on small devices with less than 10kB of ram and around 30kb of Flash memory.

TakaTuka should be fully CLDC compliant.

The virtual machine currently runs on the mica2 mote and on the PC. Already implemented

features include garbage collection and support for almost the complete Java bytecode set.

Besides this, effort has been put into reducing the size of the interpreter and the Java program.

Depending on the application, the size of the interpreter can be configured between around 5kb

to over 30kb for the full featured, threaded version.

An integration into TinyOS is in the process, taking advantage of its broad hardware sup-

port: an abstraction layer between the virtual machine and TinyOS components provides their

functionality in the Java environment, without the need to implement low level and hardware

dependent drivers. As shown in chapter 5, it is possible to adapt the two different programming

paradigms of nesC and Java by the support the multithreading established during this work.

1.4 Organization

The rest of this thesis is organized as follows:

Chapter 2 introduces the basics of concurrency in computer systems in general. It also dis-

cusses several aspects not directly related to the current implementation in TakaTuka, however,

possible directions to address these issues are covered in section 7.

Chapter 3 explains how threads are embedded in the Java programming language and how they

work from a conceptual point of view.

Chapter 4 describes in detail the implementation of the thread semantics in the TakaTuka

virtual machine in detail. It points out issues concerning the design and discusses the decisions

made.

Chapter 5 shows the use of threads to provide a blocking interface on top of the event-driven

code of TinyOS.

In Chapter 6 evaluates the implementation in terms of memory usage and scheduling perfor-

mance.

Finally, in Chapter 7, conclusions from this work are drawn. TakaTuka is compared to the

Squawk virtual machine and future improvement opportunities of threads in TakaTuka are

discussed.
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2 THEORETICAL BACKGROUND

2 Theoretical Background

2.1 Processes and Multiplexing

A modern computer system has the capability to run several programs simultaneously. It lies

in the system’s responsibility to multiplex all resources that the different programs may access.

This includes I/O channels and memory regions, but the most important shared resource is

the CPU. Although we have multiprocessor systems nowadays, it is still necessary to split the

computation power of one processor to run multiple programs in a pseudo-parallel way. This

will be referred to as multiprocessing here. Traditionally, a program running in such a system

is called a process.

Time division multiplexing is a technique to allow several several processes sharing a re-

source, each having predefined cyclic time slots assigned, in which a given process may actually

use the resource. This technique is also used in the case of CPU management.

In turn, each process is assigned a time slot to run in. When this slot is exhausted, another

process is chosen to run. The component which manages the lengths of the time slots and

chooses which process may run next, is called the scheduler.

Conceptually, a process views the machine as if there were no other programs running at

the same time. In particular, it has its own address space in the memory. Support for this is

usually built into the hardware. Each process has an associated table of information, which

stores the state of its execution. This is called context. Also, this table stores the memory

mapping. The act of pausing one process and resuming another is called context switch.

2.2 Threads

Sometimes, it is desirable to share memory between programs, since they operate in a coop-

erative way. To support this, lightweight processes called threads are introduced. They share

most of the information of the process table and consequently they are grouped into one pro-

cess. So the difference between threads and processes lies in the cooperation level, resulting in

more permissive memory accesses. For scheduling and locking concepts there is no significant

distinction.

2.3 Scheduling Strategy

There exist two approaches to multiprocessing concerning the decision how a context switch

should occur. In preemptive multiprocessing, the scheduler has the possibility to interrupt a

process at any point in time and immediately select a new one. However, a process can give up

its use of the CPU in advance. In non-preemptive, or cooperative multiprocessing, a process

may decide when to give up the CPU. If it chooses not to do so, it can run arbitrarily long.
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2 THEORETICAL BACKGROUND

2.4 Shared resource access

Preemptive multiprocessing has the clear advantage, that CPU time can be distributed equi-

tably among the processes by an independent instance. However, at any time, a process must

be prepared for a context switch. The process might be in the middle of a critical operation

which could affect other processes. Then, it must be assured that all processes depending on

the result of this critical operation wait, until the process has finished the operation in the

future. Such operations include using a unique resource other than the CPU (classical exam-

ple: printer). Generally, a resource is a part of the system, which provides functionality or

information. Variables in a program are also considered as resources.

Example: Failed concurrency In this example, two processes running at the same time affect

the operation of each other. Both have access to a shared resource, the variable x in this case.

Process A tries to compute the square root of a value stored in x, first checking if x is positive.

Process B just assigns a negative value to x. In a preemptive system, B can run anytime

between two lines of A, and before or after A. Between line 1 and 2, A has already decided to

compute the square root, relying on a positive value of x. However, if B changes x to -1 at this

time, A will run into an error. This example demonstrates, that atomicity of operations can

be critical for correct operation.

process A:

1: if(x>0) {

2: y = sqrt(x);

3: }

process B:

1: x = -1;

To control the correct access to resources, a concept called lock is introduced. A lock can

have the status acquired or free and is used to protect one individual resource. If the lock is

free, any process may acquire the lock and use the resource. When the process does not need

it anymore, it frees the associated lock. If the lock is already acquired by another, a process

desiring the use of the resource has to wait until it is unlocked. The process which has acquired

the lock owns the lock and may use the resource. The part of a program, which lies between a

lock acquirement and the corresponding free operation is called a critical section. The task of

managing access to resources is called synchronization. If two processes wish to acquire a lock

at the same time, we say they contend for the lock. The above example could be improved by

introducing a critical section around both programs, protected by the same lock. Consequently,

B could only modify x before or after A runs.
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2 THEORETICAL BACKGROUND

2.5 Deadlocks

A deadlock is a situation, where two processes wait on a lock, which is owned by the other.

Both can not execute until the other releases the lock, which will never happen, thus effectively

disabling the system’s function.

Deadlocks can be detected by analyzing the lock dependency graph, but although there

exist algorithms to avoid deadlock situations in advance, there is no general solution to remove

them completely.

2.6 Priorities

Modern systems also know the concept of priorities. For example, an audio player should be

able to run frequently, otherwise the playpack will be disturbed. Another process might copy

a big file on disk at the same time, which is usually not a time critical operation. Therefore,

each process is has a priority, indicating how preferably it should be run. This may influence

the length and frequency of time slices. Also, a higher prioritized process might be preferred

during the contention of a lock.

A system with priorities and locks can run into a situation called priority inversion. If

a highly prioritized process is waiting for a lock held by a low prioritized process, the latter

will be executed, eventually releasing the lock. However, if a medium prioritized process is

present, it will be preferably scheduled over the low prioritized one. This effectively degrades

the performance of the highly prioritized process further by delaying its execution. Common

solutions involve boosting the priority of the task holding a lock, either to a fixed high value or

to the highest priority of any waiting process.

2.7 Implementation of Multiprocessing

As mentioned before, support for multiple processes is often built into the hardware. The

processor executes the machine instructions of the current process, until an event is signaled

by an external component, such as a timer. These events are called interrupts and each has an

associated piece of code, the interrupt handler, which is part of the operating system (OS). This

mechanism is commonly used to implement multiprocessing: A timer interrupts the running

process periodically, allowing the OS to interfere and select another process to run. In the

interrupt handler, the context switch is performed: all CPU registers are backed up to the

process’s context, so that its current execution state can later be restored. Then, the context

of the next scheduled process is activated, so that it resumes execution.

In a virtual machine, the realization of concurrent execution is less constrained than on a

real CPU. Consider a (hypothetical) processor with a built-in scheduler: the operating system

would not be concerned with context switching at all. Similarly, an interpreting virtual machine
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2 THEORETICAL BACKGROUND

can run arbitrary code in between the dispatch of two virtual machine instructions, multiplexing

itself to several virtual machine threads. Such threads do not have a context in the operating

system and are not scheduled in the classical way, since the virtual machine provides its own

scheduler, registers and context specification. Threads, which are managed by a virtual machine

without the operating system’s support, are sometimes referred to as Green Threads [21].

2.8 Use of Multiprocessing, Blocking Calls

Traditional calls to the operating system, which require an event such as user input, will wait

for this event before they return. In the meantime, the calling process is put aside and paused.

This guarantees, that data is available when the process resumes. This behavior is often referred

to as blocking or synchronous calls.

If an application wants to perform other tasks while waiting for a blocking call, a common

solution introduces a new thread for each task, so that blocking does not affect the whole

system. A classical example is a webserver, which delegates each connection to a new thread.

This thread may then use blocking calls to read from the connection, handling the data and

terminating when its job is done, while the main thread keeps active, accepting and delegating

new connections.
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3 Threads and Java

3.1 Overview

Java is a popular object-oriented programming language. It has built-in support for preemp-

tive multithreading by design, providing a small number of concepts: Monitors, synchronized

sections, waiting and notifications and finally classes to spawn and manage threads. On top

of these features, many common multithreaded patterns, like task pools, can be implemented.

The design of Java threads heavily relies on the object-oriented nature of the language.

In TinyOS, the synchronization is managed by the atomic keyword [20]. It protects a code

region from being preempted by other code using the same variables. The data, which is the

resource that should be protected, is not explicitly given by the programmer. Java takes the

opposite approach: synchronization must be associated with a monitor, provided with each

object. Monitors indicate, if an object is currently used by a thread, ensuring exclusive access

to this object. However, it still lies in the programmer’s responsibility to identify possible

concurrent data access. The relation between monitors and the protected data is not specified

by the language itself, it is a protocol which the programmer defines to guarantee safe operation.

The concept of monitors is further explained below in section 3.2. In addition to monitors, Java

provides a way to communicate ownership of an object between threads, in order to manage

cooperated access. This is explained in section 3.4.

Modern Java virtual machines, like Sun Microsystem’s JRE, rely on the operating system

as back-end for their thread implementation. Native OS threads have several advantages over

green threads. Green threads do not allow preemption while a thread is executing native code.

The virtual machine does not have control over the execution while a thread is inside a call to

a native function, thus preventing virtual machine code to run and perform scheduling. This

also limits the use of a JIT. As it is undecidable how long loops would run, the JIT could not

fully compile loops into native code. As indicated in section 2.7, the implementation of green

threads is easier though, because it can be done entirely inside the high level implementation

language.

3.2 Monitors

Each object in a Java program has an associated lock, also called monitor. Like the traditional

semantics of locks, only one thread can own a monitor at any time. A thread can acquire

the same monitor several times recursively. The virtual machine counts, how many times the

owner has acquired the monitor. This number is referred to as the entry count. Conversely, the

monitor is only freed, if the owner has released it as often as acquired.

The Java virtual machine specification [18] (see chapter 8) does not mandate the format

and allocation policy of monitors.
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Monitors support the following operations:

• monitorenter: Entering a monitor is equal to acquiring the monitor, locking the object

for exclusive access. The operation is implemented as a bytecode, the monitor reference

is passed on the Java stack.

• monitorexit: The operation decrements the entry count by one, releasing the ownership

if equal to zero. Monitorexit is also initiated via a bytecode.

• Waiting and notifications as explained below.

3.3 The Synchronized Statement

and Synchronized Methods

The Java language includes the synchronized statement, which is used to denote critical sec-

tions. It takes a Java object as argument, indicating that this section should be protected by

the object’s monitor. The synchronized statement is compiled into a monitorenter bytecode

instruction at the beginning and a monitorexit instruction at the end. It is syntactically

ensured, that both operations are always used symmetrically. The Java compiler enforces this

property, even when exceptions are thrown past the end of the synchronized block. The cor-

responding monitorexit instruction is then placed inside a dummy exception handler. The

programmer is freed from the tedious task of keeping locking and unlocking symmetric, and it

is impossible to break the mechanism intentionally.

Java provides a shortcut for the frequently applicable pattern of protecting the whole body of

an instance method with the object reference, on which the method is called: the synchronized

method attribute. The virtual machine enters the monitor of the object implicitly, without

the use of the bytecode, analogously releasing it as soon as the method returns. As special

case, static methods can also be declared synchronized, locking a monitor associated with the

method’s class.

Example: Use of synchronized blocks

class Vector {

// insert o into the vector

// alters the internal state

public void insert(Object o) {

synchronized(this) {

// code block

// protected by the monitor attached
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// to the object referenced by "this"

}

}

}

In this case, the code block is protected by the monitor of the Vector represented by this.

It is equivalent to declaring the method as public void synchronized insert(Object o).

For all objects, only one Java thread can enter a synchronized block, which is protected by the

monitor of a specific object. However, two threads can enter the same code block at the same

time, if they synchronize on two different objects. On the other hand, no two threads can enter

two different critical sections, if both are protected by the same monitor. If a thread owns a

monitor, it can enter any other critical section protected by this monitor. Note that the value

of this (the object which it references) cannot be determined at compile time, but depends

on the flow of execution during runtime. Summing up, it can be said that a monitor protects

data and not code.

3.4 wait/notify mechanism

In addition to the synchronization of code blocks, Java provides a more sophisticated way for

communication between threads. The concept is to allow threads to send each other event

notifications, using an object as channel. In order to receive such an event, a thread pauses its

execution, waiting for the event to occur.

The class Object has built-in methods for waiting and notifications, as illustrated in a

(schematic) code excerpt of the Object implementation.

class Object {

...

public final void wait()

throws InterruptedException;

public final void wait(long timeout)

throws InterruptedException;

public final void notify();

public final void notifyAll();

...

}

O.wait() causes the current thread to give up O’s monitor and to suspend its execution,

waiting for a notification on this object. The set of threads waiting on an object O is called the
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wait set of O. O.notify() and O.notifyAll() causes threads in the wait set of O to wake up.

The difference between these methods is, that notify only wakes up a single thread, while its

choice is not defined but dependent on the implementation. NofityAll(), in contrast, resumes

all threads which are waiting on the object.

Both commands, wait and notify, require the current thread to own the object’s monitor. A

call to wait completely releases the thread’s ownership, thus allowing other threads to acquire it.

The state of the ownership is stored inside the thread to later recover it. Otherwise, notification

would not be possible, since the notifier must also synchronize on the object. A call to notify

causes one or more threads to be awaken. They will try to restore their previous state, for

which they will have to contend in the usual manner. The execution of a thread continues, as

if wait had just returned.

Wait can be given a timeout, defining the maximum time to wait. After that, the method

simply returns as if notified. Java defines no mechanism to detect if there was a timeout or a

real notification, however, a programmer can provide own code to distinguish the situations. If

no timeout or a zero timeout is given, the thread would wait forever until notified. The wait

methods may also throw an InterruptedException. Interruption is explained in section 3.5.3.

Example: use of wait/notify: A webserver has one thread for accepting connections. Whenever

it receives a request, it delegates the new connection to a thread designed to handle the request.

These are organized in a thread pool, waiting on a communication object, in this case a queue

containing the open connections. The main thread puts new connections into the queue and

notifies one thread of the pool, so that it can answer the request. The example is somewhat

incomplete as it does not guarantee an unoccupied handler thread in the pool, but the concept

should be clear.

/* Main Thread: */

while(true) {

Connection connection = accept();

synchronized(queue) {

queue.put(connection);

queue.notify();

}

}

/* Handler Threads: */

while(true) {

synchronized(queue) {

queue.wait();
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Connection connection = queue.get();

}

// handle the connection here

}

3.5 The Thread class

Besides synchronization, the Thread class is the most visible part of multithreading to the Java

programmer. Objects of this class correspond to running threads inside the virtual machine.

The programmer can implement the behavior of a thread by subclassing and overriding the

run method. This serves as the entry point to the thread’s operation. The thread exits as

soon as this method returns. Alternatively, a class implementing the Runnable interface can

be instantiated and given an existing thread object to run. A thread will be scheduled after

the start method was called. Other methods affecting the state and operation of a thread are

consequently grouped into this class.

A schematic subset of the class is presented, as defined by the Java (TM) 2 Platform

Standard Ed. 5.0 [3].

interface Runnable {

void run();

}

class Thread implements Runnable {

Thread();

Thread(Runnable target);

void run();

void start();

static Thread currentThread();

static void sleep(long timeout);

static void yield();

void join();

void setPriority(int priority);

int getPriority();
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Thread.State getState();

void interrupt();

boolean isInterrupted();

static boolean interrupted();

static boolean holdsLock(Objecet obj);

}

3.5.1 Runnable target

Java restricts inheritance to a single base class and an arbitrary number of interfaces. If

the thread’s main class already has a determined base, it cannot derive from Thread anymore.

Hence, threads can also take an object implementing the Runnable interface as target, invoking

the objects run method. The default implementation of Thread.run checks, if a runnable target

was given to the threads constructor, and runs that one. Otherwise it simply returns.

3.5.2 Thread States

The state of a Java thread is modeled by the nested Thread.State [14] class with six constants.

• NEW: A thread has this state, until it was started successfully by calling Thread.start.

• RUNNABLE: The thread is initialized and may be scheduled.

• BLOCKED: The thread is blocking in a monitorenter instruction to gain ownership of an

object.

• WAITING: The thread is waiting for another thread’s notification.

• TIMED_WAITING: The thread is waiting for a notification with a given timeout.

• TERMINATED: A thread has exited the run method either normally or by an uncaught

exception. Indicates, that it should not be scheduled.

In Java, the term blocking is used more restrictedly as compared to section 2.8. Both refer

to a state where the current thread has to wait for a condition, but in Java it specifically means

waiting for a monitor in contrast to waiting for an event notification.
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3.5.3 Interruption

Threads can be interrupted while in an operation, for example to indicate that the operation will

not terminate successfully. If the interrupted method is called on a thread, the action taken

depends on its current state. If it is waiting on a notification or timeout, the corresponding

method call will signal an InterruptedException in that thread. If the thread is runnable,

the interrupted flag is set, which can be checked by the thread periodically. While the wait and

notify mechanism provides a way to communicate normal events, interruption can be used to

signal errors.

3.5.4 Further operations

Java’s model of application security involves a security manager class, providing a security

context. It specifies, what actions can be taken by the Java program in a given context.

Operations, which modify a thread from another one (like interrupting) depend on such policies.

If access is not granted, a security exception is thrown.

A thread may invoke the yield operation to give up its remaining time slice. The scheduler

selects another thread to run. A call to sleep pauses the current thread for a given time. Joining

another thread acts like waiting on some designated object, which is notified as soon as the

other thread terminates.

3.6 Shared variables

The Java virtual machine specification [18] chapter 8 defines terminology and semantics of the

different thread constructs. Java allows threads to have a private copy of variables and to work

on them without updating the main memory. When performing synchronization, the virtual

machine also writes back the private copies. These rules mostly apply to compiled Java code

or special optimizations, for example when caching variables or objects in registers or on the

stack. Since the TakaTuka virtual machine does not use such techniques, many rules do not

have to be implemented explicitly.

3.6.1 Java Stack

The Java stack is organized in activation records, one for each method call. An activation

record stores the local variables and the operand stack. The local variables also include the

parameters passed to the function, hence all variables which can be referred to with a locally

scoped identifier in Java. The operand stack is used for computation and temporary results,

as the Java virtual machine uses a stack based computation model. Stack-frames do not need

to be contiguously aligned in memory and the virtual machine is free to allocate them in a

convenient manner (see [18], 3.5 Runtime Data Areas). The stack itself is organized in slots.
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A slot must be large enough to hold all Java types, including references, except for long and

double, which occupy two slots. Knowledge about the stack layout will prove valuable when

implementing multiple stacks for multithreading.
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4 Implementation Details

4.1 Multiplexing the Virtual Machine

4.1.1 General Design Deliberations

Green Threads or Native Threads TakaTuka implements green threads instead of native

threads. The disadvantages have already been discussed in section 3.1. The decision for green

threads was made for a couple of reasons. The virtual machine should run on many different

hardware platforms. The low level threading code, especially the context switch and the stack

allocation, has to be implemented partly in assembler for native threads. This is very target

specific and would have to be redone for each platform. Synchronization concerns are thereby

pushed into the virtual machine, as management code may run in an arbitrary thread. Several

threads could enter the same virtual machine routine concurrently, so all code must be reentrant.

This implies restrictions on global variables and enforces locking of data structures inside the

virtual machine. The resulting code and memory overhead overweights the benefits of the

possible preemption in native methods. Using the thread implementation of another wireless

sensor networks operating system like MANTIS or RETOS would restrict TakaTuka to such an

environment, which is not our desire. TinyOS integration would be harder to do with native

threads, as the system is not thread-safe, although support for preemption has been built into

it recently [8].

Speed vs. Size Efficiency of threads is the major concern, RAM and CPU usage should

be kept as low as possible, leading to trade-off decisions between speed and size. Currently,

we aim at reducing RAM usage as much as possible before optimizing calculation time. This

manifests in the organization of threads in one queue, as outlined in section 4.5 on the scheduler.

However, the overall system will be revised from an algorithmic point of view soon.

4.1.2 Stack

The stack is organized by activation records, also called stack-frames in TakaTuka. In general,

an activation record carries the data which is necessary to resume its method invokation. A

stack-frame in TakaTuka concretely consists of the current stack pointer, the program counter

and a reference to the current method. Additionally, a reference to the caller’s stack-frame

is stored, providing the necessary information to return from the call. The virtual machine

maintains a pointer to the currently running stack-frame for its execution. Memory for local

variables and the operand stack is adjacent to this information, so that stack-frames are com-

pletely self-contained and not dependent on a particular organization in memory. Usually, a

stack grows down downwards, towards the heap memory. The stack and the heap are abstracted

in TakaTuka and due to stack-frames, the stack growth direction is not fixed by the design.
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In TakaTuka, the stack inside a frame growth upwards. Please note that the total number of

parameters and local variables and also the size of the operand stack can be determined at

compile time. This value is provided to the virtual machine for every method and stored in the

class file. Being self-contained is a feature that is paid by one extra register in the activation

record: the stack pointer after returning is known in a continuous stack implementation and

can be kept in a global register. Our approach is compared to Squawk in section 7.2.

4.1.3 Context Cache

In order to optimize several operations, the virtual machine caches some pointers related to the

executing method.

• A pointer to the local variables to speed up their lookup, since they are used frequently

by the bytecode. The local’s memory region is below the operand stack. Parameters are

expected to be the first part of the local variables and are also referenced by the pointer.

• A pointer to the beginning of the bytecode array of the current method. For example,

the jsr bytecode (jump to subroutine, as in [18] chapter 6) depends on the offset of the

program counter.

• A pointer to the base of the operand stack of the current method. This is used for

clearing the operand stack when catching exceptions and for stack pointer checks in the

debug-enabled version of the virtual machine.

The latter two pointers are not strictly necessary, as they mainly speed up the use of

exceptions and debugging, which is not the general case. On the other hand, their memory

usage is comparable to an empty Java object and therefore acceptable.

4.1.4 Thread extension

With the current stack design, several adaptions to the virtual machine had to be made to

support concurrently running execution flows:

• Stack-frames have to be grouped by threads. This is easy to implement, as they already

form a linked list with the current one as its head. Hence it is sufficient to keep a pointer

to the top stack frame in each thread object.

• The allocation of stack-frames becomes more complicated, since they are not created in

first in first out order (FIFO) any more. This property is only true as long as one thread

runs, but can be invalidated by context switches. Usually, each thread is assigned its own

private stack memory, where the FIFO order can be restored locally. Since the maximum
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total stack requirement can not be determined in advance, it has to be overestimated,

wasting memory.

In TakaTuka, frames are currently allocated by the system library’s dynamic memory

management. This slows down the stack considerably (see section 6.2), but bypasses the

overestimation of each stack’s size.

• The virtual machine keeps a reference to the current thread. To perform a context

switch, two operations are needed: saving the current context in the executing thread

and activating another thread. Saving is trivial, as all registers are directly used from the

stack-frame and are always up to date. Hence it is sufficient to update the frame pointer

in the thread. Restoring involves the recalculation of the context cache, reading out some

method properties and pointer arithmetic. The procedure is similar to invoking or exiting

a method.

• Rescheduling hast to be initiated regularly even if no thread blocks, to allow concurrency.

The virtual machine counts the number of backward and return branches and switches

threads if the sum has exceeded a certain threshold. This guarantees linear code to execute

non preemptively. The strategy reduces the number of counter checks, as only certain

bytecodes can initiate switches. Possibly, this reduces the number of locked monitors

when a context switch is performed, leading to less contention overhead. This aspect

could be investigated in the future (see section 7.3).

4.2 Implementation of the Thread class

4.2.1 Native Code

A Thread in TakaTuka carries the following internal information, which is private to the virtual

machine and not directly visible in Java.

• The Thread objects inherit from the Object class all management information of the

virtual machine. Also, the support for monitors on a thread object itself is given.

• A state, indicating if the thread is runnable, blocked, waiting, during initalization or has

terminated. The scheduler has special private native methods to read and modify this

state. The state is defined by the Java specification, see section 3.5.

• A record to backup a monitor’s state while a thread is waiting: an object reference and

the entry count. This is entirely managed by the virtual machine and not exported to

Java, like the monitors’ state itself.

• A pointer to the current activation record and the stack space of the thread, as described

in section 4.1.2.
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• To signal exceptions in a thread which is not executing, a reference to a pending exception

can be stored in each thread. A Java interface is provided to set this exception. When

the thread’s context is activated, this reference is evaluated. If an exception is pending,

it is thrown immediately after switching to the thread.

4.2.2 Java Code

Some parts of threads are directly modeled in Java.

• The runnable target is easily implementable in Java, as it does not require any support

by the virtual machine.

• All threads currently subject to the scheduler are organized in a doubly linked list. Point-

ers to the next and previous element are directly stored in the thread class as public

variables. This design is not very clean, since the list can be corrupted by anyone. On

the other hand, it is straightforward and also the fastest possible implementation besides

having the scheduler entirely as native code. Section 7.4 provides more thoughts on this.

• The methods for interrupting, yielding, joining and sleeping require direct support by the

virtual machine. They are exposed via the Scheduler class, and the thread class simply

delegates these operations. The rationale for this is, that they can be brought down on a

common denominator, mainly through a generalized wait/notification system.

• Starting a thread is also delegated to the scheduler, simply by adding the thread to the

list. It is initalized later when running for the first time.

• Interruptions are implemented in Java, the interrupted flag is a field inside the thread

class. Special handling is only required in the case that the interrupted thread is currently

in a wait operation, which is covered by throwing a remote exception.

• Priorities are currently not implemented. Most of the priority support can be done in

Java, with one exception: notifying a single thread should choose an approrpiate, high

prioritized one. Since the implementation is done in native code, it would have to be

adapted to the scheduler’s logic. This should improve, when more of the wait/notify code

moves to Java.

4.2.3 Deprecated Methods

The methods stop, suspend and resume have been deprecated by the Java standard [3], hence

they are not implemented in TakaTuka. If the need arises, they can be modeled in Java by

modifying the Scheduler.
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4.3 Implementation of Monitors

4.3.1 Data Structures

The monitors, associated with Java objects, are natively implemented by the virtual machine,

which means they do not depend on Java code. A monitor references the owner thread if locked

and stores the entry count. In TakaTuka, each monitor has two fields storing this information.

The fields are private to the virtual machine and not exposed to the Java environment. An

object having an owner equals to null is not locked and must have an entry count of zero.

Monitors are allocated on demand. The virtual machine keeps a global list of all currently

used monitors in last recently used order. A small number of unlocked monitors is kept for

reuse. This has the advantage no memory overhead inside objects is introduced.

In the future, more functionality of the threads might be implemented in Java, eventually

modelling monitors as proper objects. This will be discussed in section 7.1.

4.3.2 Operations

Entering a Monitor The actions taken when entering a monitor depends on the current

owner. If the monitor is unlocked or already owned by the current thread, it may claim

ownership and increase the entry count by one. If the monitor has already been acquired by

another thread, the current thread enters a blocking state. It saves the monitor, which it failed

to enter, and the virtual machine initiates a context switch, running another thread.

Exiting a Monitor Exiting a monitor is done by decreasing the entry count by one. If the

count reaches zero, the monitor is unlocked, setting the owner to null. The current thread may

continue its execution unless it loses ownership of the monitor, to allow other threads to acquire

it. This guarantees fairness among all threads.

Waiting The wait operation on a monitor first checks, whether the current thread owns the

monitor. If so, the monitor’s state is stored in the thread, and the monitor is freed, according to

the Java specification. Otherwise, an exception is thrown. The thread’s state is set to waiting

and if a timeout is given, the wakeup time is associated with the thread. Then, rescheduling is

initiated.

TakaTuka supports anonymous waiting without a specific monitor. The thread is simply

put into the waiting state. This is useful for the implementation of the sleep method. Such a

thread can not be notified, however, it can be awaken by a timeout.

Notifications Notifications also first check ownership in the same way as waiting. The virtual

machine traverses the list of threads to find one, which is waiting on the monitor, setting its

state to blocked. The thread will then take part in the contention of the monitor, and is
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eventually resumed, just returning from its call to wait. If all threads on the monitor should

be notified, the search continues until all threads have been examined.

A special version of notify exists, which is mainly a workaround for drivers: Native code

can call notifications without being the owner of an object. As it is not clear what thread

is currently running, it is not suitable to manipulate its locking status. Ownership for wait

and notify is usually necessary to prevent race conditions between threads and to protect the

internal state of the monitor from concurrently being manipulated by several threads. If the

Java interface takes care of not exposing the object on which the driver notifies the waiting

thread, it is guaranteed that the monitor is free anyway when the event occurs, resulting in a

safe system.

4.4 Components written in Java

Parts of the virtual machine are written in Java itself. This includes the scheduler and the

garbage collector, for example. These components will be called services from now on.

4.4.1 Initialization and Services

The virtual machine is represented by a special Java class named VM, which is responsible to

coordinate the initialization and invocation of the TakaTuka runtime and its services. After

the interpreter has started up, it creates a thread inside the Java heap for the operation of the

VM class and the services, which will be referred to as the service thread. Control is transferred

to the initialization procedure written in Java, running in this thread, which sets up storage

for static variables, the input/output streams, and calls service initializers. In the next step,

a second thread is created and started. In this thread, the main method of the application is

invoked. The concept of having a service thread is taken from the Squawk virtual machine and

discussed in section 7.6.

4.4.2 Dispatching Service Requests

After the initialization has completed, the service thread enters an infinite loop. The thread

is paused and not run again until a virtual machine service is requested, either by some Java

code or by the virtual machine itself. The VM class has a variable, indicating the desired service.

So, whenever a service is demanded, this variable is set accordingly and the virtual machine

switches to the service thread, which evaluates the request and performs the corresponding

actions.

The service thread does not use wait and notify to pause and resume itself, since this would

result in a circular dependency: the scheduler is required to switch to the service thread, and

at the same time, this same switch is required to run the scheduler. Instead, the scheduler

explicitly excludes the service thread from the list of runnable candidates. Only in case of a
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service request the virtual machine directly runs the service thread. This is triggered either by

a call to the special VM.requestService(id) method, or internally from the C code.

4.5 Scheduler

The core scheduler of TakaTuka is written in Java, assisted by several native methods. It is a

simple round robin scheduler, selecting the next runnable process in turn.

If a thread has exhausted its time quantum, the virtual machine posts a scheduling request

and then switches to the service thread. The service thread dispatches the request, which in

this case runs the scheduling algorithm. The scheduler iterates over the list of all threads,

deciding its action depending on the state of a thread.

• If the thread is runnable, the scheduler calls back to the virtual machine, specifying this

thread as the next one to run.

• If the thread is blocked on a monitor, there are two cases: 1) The monitor has been

released by the owner since the last thread switch, then allow the current thread to

acquire the monitor. The saved monitor state is recovered and ownership is declared. 2)

The monitor is still locked by another thread, then continue the search with the next

thread in the list.

• If the thread is waiting on a notification without a timeout, continue the search, since the

notification is performed internally. If a timeout is set and it has expired, then set the

thread’s status to blocked, indicating it should contend for the monitor. The ownership

status holding before the call to wait is restored as described in the preceeding bullet-

point. The current implementation allows the thread to contend immediately in the same

scheduler loop iteration.

If there are no runnable threads, the scheduler has traversed the list without determining a new

runnable thread. All threads are either blocked or waiting. If all threads block on a monitor,

then we ran into a deadlock and the virtual machine terminates with an error. If there is at

least one thread in a timed waiting or depending on a driver notification, the whole system can

pause and enter an energy conserving sleep state. TakaTuka relies on a library function for this

operation. Other power management like turning off the radio should not be automated and

are left to the application’s programmer.
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5 Case Study: Mapping TinyOS Events to TakaTuka Threads

5.1 Event Style vs. Threads

TinyOS adapts to the event style programming, where calls to the operating system are split

into a command (request) and an event, which carries the response. Normal TinyOS code can

only be preempted by interrupts. The relation between commands and events may be arbitrary

and each component has to keep track of its current state manually.

Classical read and write commands to the operating system block the calling process (see

section 2.8). A major benefit of threads is the automatic state management. TakaTuka will use

threads to provide a blocking interface on top of the TinyOS event based architecture. Purpose

of this case study is to show the application of TakaTuka’s threads inside driver implementa-

tions.

5.2 TinyOS Structure

TinyOS is highly modular. It has a strict distinction between interface and implementation.

Components provide and use interfaces, which is the only way for interaction. Configurations

group several components, specifying what concrete component should be selected as the im-

plementation of an interface, which another uses. This is called wiring.

The nesC compiler traces the use of components, starting with the main application con-

figuration, following all referenced components and configurations recursively. This allows it

to remove much of the TinyOS code, eg. implementations of drivers for other platforms and

unused features. During this step, it translates components to C functions and performs ag-

gressive optimizations and inlining. As result, a big C file, containing the whole application

and operating system code, is given to the appropriate C compiler. The nesC compiler can be

instructed to generate an application binary, or an object file, which can be further linked with

other code.

5.3 Embedding TakaTuka inside TinyOS

5.3.1 TakaTuka running as a TinyOS component

The main interpreter loop of TakaTuka originally runs until the Java program exits. For

perpetual systems, this is equal to "forever". As TinyOS does not support preemption, the

main loop has to be adapted: it runs for a specified time and periodically returns to TinyOS,

leaving the virtual machine in its current state. This allows the TinyOS system to signal events

and do its own bookkeeping. Later, the main loop is resumed.
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5.3.2 Component-Class Mapping

In the simplest case, each driver component has a corresponding Java class, which exposes the

functionality as methods. The first decision is to determine whether to use class or instance

methods. If the driver has to keep a state for every client, like a timer, it can easily be stored

in instances of the Java class. A reference to the object is automatically passed as parameter

to the native method. The driver does not have to worry about allocating and releasing this

object, which is done by the programmer in Java.

5.3.3 Calling TinyOS from Java

By default, the nesC compiler declares all functions as static in the generated output, so that

they can not be referenced from outside this file. We link TakaTuka with the object file gener-

ated by nesC, and every function which is called from TakaTuka but implemented in a TinyOS

component must be annotated with the special attribute __attribute__((C,spontaneous)),

to prevent it from being hidden [10].

TakaTuka calls its native functions using an ID, stored in the bytecode. These IDs are

consecutive, so that the corresponding function pointer can easily be looked up by indexing a

table. This table is automatically generated by the PC side class loader, referencing functions

by a special naming convention. The function can be placed in any C file, as long as it is linked

with the virtual machine. Exploiting this feature, the implementation of a function inside

TinyOS components is straightforward: Placing it inside a TinyOS component gives it access

to the components data and code, while being directly interfacable with the virtual machine.

5.3.4 Calling Java from TinyOS

Calling Java methods from TinyOS is more challenging. The main problem is, that an arbitrary

thread is running when the component in TinyOS wants to issue the call. Although it is possible

to manually switch to the desired thread, perform the call then and switch back, this implies a

big overhead, hence this approach is avoided. Also this falls into the category of event driven

programming, as the driver issues a callback.

The Java semantics provide a very convenient way to solve the problem: The wait and notify

mechanism. If a thread issues a call to a driver, the driver may decide to let the thread wait

on a determined communication object. When the data arrives, the driver can notify on the

communication object, so that the thread resumes its execution. Preferably, the communication

object can also be used for data passing. By this technique, the driver does not even have to

know the thread, only the object, which can be stored inside its private data. The wait/notify

system automatically selects the correct thread and resumes it.
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5.3.5 Passing Data to Java

Data is copied into Java objects as soon as it is available in the driver. This frees it from

keeping buffers or queues, leaving such management to Java, which has better capabilities of

dealing with dynamic data.

5.4 Radio Communication Integration

Equipped with the strategies outlined in this chapter, a driver for the TinyOS message abstrac-

tion has been developed during this work. It can send and receive packets over the radio as

well as any other communication channel, which provides the AMSend and Receive interfaces

in TinyOS.

5.4.1 Java Side

In Java, the Radio class exposes the driver interface, while the Packet class mirrors the message

data structure of TinyOS. Radio has one method for each sending and receiving, respectively.

A thin abstraction between the native methods and the public interface translates internal

errors to exceptions and assigns source and destination for convenience. It enters the packet’s

monitor before calling the native back-end, allowing the driver to call wait on the packet in the

current thread’s context and protecting the same packet from being passed again to the same

function by another thread. The Radio class also serves as a Packet factory, returning packet

objects containing a preallocated data buffer with the maximum payload size. All objects for

packet transmission and retrieval are constructed in Java, so that the driver does not need

to perform these operations. This also holds for reception, as the receive method does not

return a new packet, instead it writes into an existing one which it has been given as argument.

The programmer may reuse the same packet object after processing its data, resulting in less

garbage objects.

5.4.2 TinyOS Side

Driver Design In TinyOS, packets are represented by the message_t structure. They carry

source and destination, as well as a payload and some other internal data. For both sending

and receiving, the driver employs a similar strategy. It keeps a reference to the Packet object,

passed to the native function, while serving a Java thread. This bridges the gap between the

command and the event, as TinyOS does not have a cookie for such operations. The component

is forced to keep track of the information associated with a split phase operation. When the

event finally occurs, the driver knows on which object the notification should be done. If the

driver is idle, the reference to the communication object is set to null. This property can be

used to detect attempts for concurrent use of the driver which is not supported.
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Sending Besides synchronization, the sending code copies the payload from Java to an inter-

nal message buffer and reads out the destination address. The thread is paused and resumed

via the described mechanism.

Receiving Unlike sending, packet reception has no direct relation between the request and the

corresponding event. There is no active command to receive a packet, just turning on the radio.

Hence, the packet reception can occur at any time. If a thread is waiting for a packet at the time

of the arrival, it is copied to Java and the thread is awaken by a notification. Otherwise, the

driver keeps the last received packet in an internal buffer, which can be immediately delivered

to Java without pausing the requesting thread. Only one packet is queued, so information is

lost if the Java program does not actively read it. Future improvements might use a designated

thread to read out all messages or implement a longer queue inside the driver.

5.4.3 Power Management

The embedded version of TakaTuka has to deal differently with the sleep state, since TinyOS

is still running under the hood, which might have further work to do, even when TakaTuka

can pause. To enter the sleep mode, a flag is set, and the main loop exits, returning control

to TinyOS, which does not post the main loop task again. TinyOS automatically puts power

down if no tasks are in the queue, waking only on interrupts. Inside the resulting events, the

driver code may resume the virtual machine, which is necessary if a thread was notified.
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6 Evaluation

In this section, several aspects of the implementation of threads in TakaTuka are evaluated

with respect to their memory usage and computation overhead. The majority of the statistics

is descriptive and does not compare different approaches. This evaluation gives an overview of

the resources used by the current implementation in order address improvements precisely.

6.1 Memory Usage

The TakaTuka virtual machine can be configured to use either four or two bytes for the Java

int type, while long is always configured to occupy 8 bytes. As two bytes is the size for the

int type in C on the mote, TakaTuka uses this setting as default for Java, too. Therfore, the

results are related to two byte sized integers.

6.1.1 Virtual Machine Memory

Thread support significantly increases the size of the virtual machine binary. The memory used

by thread and TinyOS support is presented for two architectures:

• AVR: 8 bit Atmel ATmega128 AVR microcontroller [6], compiled with avr-gcc and linked

to the avr-libc [1]. This architecture is used for the mica2 mote.

• I686: Intel i686 compatible, compiled with gcc (the GNU C compiler) running on Linux

and linked to the glibc C library.

VM Code and Data Sizes

Version Code RAM

AVR no threads 17280 331

AVR threads, no TinyOS 20046 345

AVR threads and TinyOS, Radio drivers 55150 459

I686 non threaded 15686 956

I686 threaded 18277 1012

AVR overhead 2766 14

TinyOS overhead 35104 114

I686 overhead 2591 56

Values are in bytes and were retrieved by the size (1) unix utility, avr-size respectively.

Code is the size of the text section of the executable. RAM is the sum of the data and bss
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sections 1. The measured overhead is the difference between the threaded and non-threaded

version. The TinyOS overhead is relative to the non-TinyOS but threaded version.

The greater code size for the AVR architecture results from the 8 bit processor. It needs

multiple instructions for copying and arithmetic of 16 and 32 bit types. It has a reduced

instruction set (RISC) with many registers. This leads to longer function prologue and epilogue

code to save and restore these registers, as well as more instructions for certain tasks, as

compared to i686 using a complex instruction set (CISC). The greater RAM usage for i686 is

originated in the glibc library.

6.1.2 Java Code Size

The following table shows the Java code size, as generated by the loader in our optimized

format, sizes in bytes. The program used in the example prints a number on the standard

output or the serial communication respectively. There is no difference in size between the

mote and the PC as the platform specific code is embedded in the virtual machine.

Java Code Size

Version Java Code Size

No threads 2507

Thread support total 4758

Thread support and Radio driver total 5292

Thread support increase 2251

Radio driver increase 534

6.1.3 Stack

Stack-frames are organized as described in section 4.1.2. A stack slot is modeled by a tagged

union named stackv_t. It uses a one byte tag to identify the type of the value currently

stored in the slot, which is needed to identify reference values for garbage collection. The tag

information is also used for debugging, as it can identify invalid stack use resulting from vir-

tual machine bugs. Single precision floating point values occupy four bytes in the underlying

implementation. A slot must be big enough to hold any Java type, except long and double.

The resulting size of a stack slot is thereby five bytes.

1Data contains program variables which are explicitly initialized or shared between several C files. Bss

contains static variables, which are automatically initialized to 0 by the runtime. Text contains program code,

which is stored in flash memory on the AVR.
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stackv_t

Variable Type Size in Bytes

type byte 1

i int

4f float

a reference

Sum 5

StackFrame

Variable Type Size in Bytes

parent_frame pointer 2

method_id Method 2

stack_pointer pointer 2

program_counter pointer 2

stack_slots[] array of stackv_t 5·(locals+stack)

Sum 8 + 5·(locals+stack)

As an example, the following instance method would allocate a stack-frame with a size of 28

bytes: two local variables, two operand stack slots and the frame header. It also shows the

computation memory overhead of stack based virtual machines.

Java Code:

class Object {

public boolean equals(/* Object this; */ Object other) {

return this == other;

}

}

Bytecode:

1: aload_0 push this onto the stack

2: aload_1 push other

3: acmpeq compare: pop 2 values, push result

4: ireturn pop result and return it
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6.1.4 Thread Objects

Constructing a thread has constant memory costs. Each thread occupies 27 bytes in memory

plus an entry in the object ID to address map.

Thread

Variable Type Size in Bytes

Java Variables

Thread.runnable Runnable 2

Thread.interruptedFlag boolean 1

Thread.prev Thread 2

Thread.next Thread 2

Native Variables

class_id Class 2

flags byte 1

state byte 1

monitor_id Object 2

monitor_count int 2

wakeup_time long 8

pending_exception Throwable 2

stack_frame pointer 2

Sum 27

6.1.5 Java State and Service Thread

The virtual machine class and the scheduler class store themselves some data only related to

threads:

VM & Scheduler

Variable Type Size in Bytes

VM.serviceRequest int 2

VM.serviceThread Thread 2

Scheduler.previousThread Thread 2

Sum 6

Most resource requirements are introduced by the additional service thread. The service

thread itself runs inside an infinite loop, which requires a permanent stack-frame in memory.

This frame has no arguments or local variables, but uses an operand stack of three slots.

Summed up, the memory usage increase generated by the Java code for threading in terms of

RAM is as follows:
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Threads: Java Memory

Runtime Data Size in Bytes

VM & Scheduler state 6

Extra service thread 27

Permanent stack-frame 8+15 = 23

Sum 56

6.2 Stack Speed

This section compares the speed of the stack for two different allocation schemes. Firstly, the

mechanism relying on the memory management of the C library and secondly a first in first

out stack implementation inside the virtual machine. The program used as benchmark is a

recursive calculation of the fibonacci function. Implemented in this way, the time complexity

for calculating fibonacci numbers grows exponentially. This leads to a high number of method

calls and stack-frame allocations and deallocations.

int fib(int n) {

if(n <= 2) return 1;

return fib(n-1) + fib(n-2);

}

The test was performed on the PC to facilitate time measurement. The result for running

the benchmark on the mote is expected to be comparable. The memory allocator implemented

in the avr-libc will not be faster than the one on the PC as the resource constraints discourage

trading memory for speed ([1], documentation of malloc()).

The above function was called with a parameter of n=30 and the time was measured with

the unix time (1) utility.

Stack Speed

Allocation Scheme Time

FIFO 5.158s

Malloc/Free 9.245s

Obviously, the implementation using the general purpose memory allocator is slower. This

result is not astonishing, but demonstrates the need for a proper stack implementation inside

TakaTuka.

6.3 Scheduling Overhead

In order to evaluate the overhead of the scheduler in Java, the ratio between instructions exe-

cuted in the service thread is related to the number of instructions executed in the application.
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Two threads run concurrently, each printing numbers to the standard output in an infi-

nite loop. The print operation involves locking the corresponding output stream object, so

rescheduling is also initiated my monitor contention. The test runs a total of 100000 instruc-

tions.
Scheduling Overhead

Ticks for each thread Service Thread Application Ratio

100 41054 58946 0.7

1000 4719 95281 0.05

10000 701 99299 0.007

"Ticks for each thread" is the maximum number of instructions which a thread may execute

before rescheduling is initiated. The instructions executed in the service thread is given as

well as the instructions executed in the application code. The rescheduling operation takes

approximately 30 bytecodes if the next thread in the list is runnable. If threads contend for

locks, the scheduler has more work to do, which explains the high ratio for 100 ticks. With 1000

ticks before rescheduling, the overhead is already quite low with 5 percent. Executing 10000

instructions before rescheduling might not be desired, because it can lead to high latencies

when reacting on events. From a theoretical approach, the current algorithm used for selecting

a runnable thread has a worst case time complexity of O(n), where n is the number of started

threads.
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7 Discussion and Outlook

In this chapter, several design decisions are reviewed and discussed regarding to their advantages

and disadvantages. Solutions found in the Squawk virtual machine are presented and compared

to the implementation in TakaTuka. Based on the evaluation results, future improvements

are suggested and outlined. Furthermore, the purpose of this chapter is to document the

current status of TakaTuka and its implementation of threads, and support ongoing work on

controversial issues.

7.1 Java VM parts and Monitors

It is generally a good idea to implement parts of a JVM in Java itself. Testing is easier because

Java code is protected by many runtime checks. For example, null pointer accesses, invalid

casts or array indices are caught by the virtual machine. On the other hand, all functionality

written in Java has to be interpreted (at least in our case) and is orders of magnitudes slower.

Java objects and variables require more code and data memory than native their counterparts.

Taking the realization of monitors in Squawk as example, it is illustrated, how to efficiently

implement parts of the virtual machine in Java.

Squawk accepts no compromise, as most data structures are visible in Java. Monitors are

allocated on demand and attached inside a so called ObjectActivation to the object. An object

activation has the ability to serve as a proxy to class objects. Hence, it can replace the objects

class, saving an extra reference variable. Squawk uses a queue of pending monitors to indicate

synchronization on them. Monitor operations are executed lazily inside the virtual machine.

Contentions are detected at the time of a context switch. 2 In such a case a Java method

is invoked, which performs the monitor operations. This effectively reduces the computation

needed for uncontended monitor operations, because they do not call Java code. However, the

RAM usage of monitors is increased, as they are full blown objects.

TakaTuka aims at devices significantly smaller than supported by Squawk. The choice

of native monitors is based on this fact. The interface between the virtual machine and Java

together with the actual implementation would introduce a considerable overhead and make the

monitor bytecodes more complicated. Native code has more freedom in dealing with monitors,

possibly providing a more effective allocation strategy. On the other hand, a better integration

into the scheduling algorithm can be established, if monitor states are accessible from Java. A

good solution should find a way to accommodate both aspects. A possible starting point for

improvements is the code for wait/notify, which is more loosely coupled to the virtual machine

internals.

A new aspect is introduced by the vm2c module of Squawk. It can translate a subset of Java

2This information is taken from the Squawk sourcecode [24].
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code to C. This enables the virtual machine programmer to choose between a native implemen-

tation and the interpreted one. For example, he might use the latter during debugging, while

the compiled version is used for the production virtual machine. Squawk uses this approach

for its garbage collector. Future work could adapt vm2c to TakaTuka, as it is open source.

7.2 Stack Design

Squawk uses a list of stack chunks for each thread [21], which themselves are modeled as arrays

in the Java heap. Each has a pointer to the next chunk. This creates a dynamic size stack

with moderate overhead. It is possible that a method is called subsequently several times

when the current chunk is full, requiring to allocate the next chunk for the method’s calls. For

optimization, the virtual machine keeps one unused chunk at the end of the list for this case,

as the described situation would otherwise lead to excessive allocation/deallocation.

TakaTuka should use a similar technique in the future, as the current design involves the

computation overhead of the underlying memory manager. A more sophisticated approach

could incorporate ideas from the RETOS operating system [16], which has a shared kernel

stack. The system could have one main stack on which all threads run and move parts of it to

the heap if needed. Research into this direction has already been made with the multi stack

sharing technique [19] or the Knots system [4].

7.3 Scheduler Improvements

The virtual machine can be extended to initiate context switches at times, when the current

thread is in a low resource state: for example when it owns less monitors or when the call depth

is small. Such a strategy could also use grace times similar to [8]. Resource sharing will be

more cooperative, resulting in better performance and memory usage.

Currently, the scheduler has only one list for all threads disregarding their states. Starting

with three different lists for the states runnable, blocked and (timed) waiting, the scheduling

algorithm can be improved to finally run in constant time. In order to support this, the

implementation of synchronization and wait/notify has to be adapted to move threads between

these lists

7.4 Thread List

The current solution used for the linked list of threads exposes the prev and next references as

public variables. This is fast and simple, but access should be limited to the scheduler class.

Squawk separates threads in a public interface provided by the Thread class and a private

interface, provided by the VMThread class. For a new thread, one object of each is constructed

with bilateral references. The scheduler operates mainly on the vm-threads by keeping them
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in a list. This solution hides all implementation details from the application interface with the

cost of an extra object per thread.

7.5 Priorities

Priorities can almost entirely implemented in Java with the only limitation that the native code

for notify would have to be adapted to prefer processes with the high priority. The scheduler

might keep a separate list of threads for each priority, first executing each runnable thread of

a higher priority before considering the next priority level. Generally, thread starvation is an

issue: low prioritized processes are never chosen to run because of activity in a higher prioritized

process. Priority inversion detection would also need support by the virtual machine, either by

exposing the set of locked monitors of a thread or by implementing it natively.

7.6 Service Thread Design Aspects

The decision for a separate service thread was chosen for several reasons, which will be explained

in detail.

• Running Java code in the virtual machine requires some registers, including the instruc-

tion pointer, the stack pointer and the current method. Each thread has its private copy

of these registers and also its assigned stack space. Running a service in an arbitrary

thread would act like an artificial method call. This means that the thread’s stack and

registers are used for the evaluation of the service. As a consequence, each thread’s stack

must be large enough to run any service at any time. Also, if the service throws an

uncaught exception, it will propagate down the call hierarchy, disrupting the operation

of the previously running code.

• The virtual machine can not assume safely, that the current thread, in which a service

might run, is in fact runnable. For example, it could just have called wait, resulting in the

need to reschedule. The current thread’s state would have to be forcibly set to runnable,

allowing operation in its context, later restoring its previous state.

Summarized, the use of a designated service thread frees the virtual machine from all concerns

of mixing up two execution flows in one context. Besides being less bug-prone, this results in

a cleaner and more logical design.

On the other hand, there are several drawbacks with this approach:

• The additional thread increases the memory requirements of the virtual machine, espe-

cially in terms of valuable RAM.
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• Running a service requires a context switch, which produces some overhead. The switch

between two application threads results in two low level context switches, since the sched-

uler is required to run in its own thread.

In the non-threaded version of the virtual machine, most of the rationale for a separate

service thread are void. If the program blocks on an operation, there is no need to keep the

system alive (i.e. running other threads). It can simply wait for the operation to terminate.

The whole concept of locks and waiting is not used, so the state of the current flow of execution

is always runnable.

As conclusion, having a separate service thread results in a cleaner design of the virtual

machine internals when running multiple threads. The non-threaded interpreter uses a different

implementation of the VM class and services to save resources.

7.7 Code Size and RAM Usage

The results from section 6 show two sides of the resource requirements of the presented thread

implementation. On the virtual machine side, the memory increase introduced by threading is

clearly visible but still moderate. The memory usage for maintaining thread objects and the

service stack is quite high. The increase of Java code size is almost the same as compared to

the native threading code, although it provides much less functionality. TinyOS integration is

costly, but one has to keep in mind, that it includes a complete radio driver with a full protocol

stack. Overall, the requirements seem low enough to run medium sized Java applications on

motes lice the mica2.
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8 Conclusion

This work successfully introduces threads into the TakaTuka virtual machine. The major-

ity of thread mechanisms has been implemented, including synchronization, notifications and

preemptive concurrency.

Integration of TakaTuka into TinyOS was established and makes use of the provided hard-

ware abstraction. A convenient blocking interface can be implemented on-top of the underlying

event driven architecture with the current status of multithreading in TakaTuka. Several open

issues have been pointed out together with suggestions for improvements.

Threads do use a considerable amount of memory, in particular in terms of valuable RAM.

The results also indicate, that running Java code is generally costly. Using Java code for the

program logic and native methods for computation intensive tasks is suggested as a trade-off

between ease of programming and efficiency.

:wq
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